Fiber-Lube Application Data Sheet

Service Conditions
- **Speeds (Max., Min., Average RPM or Cycles per minute)**
- **Loads (lbs, or psi)**: Radial Axial, Constant, Fluctuating, Shock, Vibratory
- **Motion**: Rotating shaft with unidirectional load, Rotating load with stationary shaft, Oscillating shaft, Angle, Reciprocating Stroke
- **Shaft**: Drawing Number, Horizontal, Vertical, Diameter, Misalignment anticipated
- **Material**: Hardness, Surface Finish
- **Housing**: Length, I.D., O.D., Material, Construction: Light, Heavy

Service Life Required
- **Total Life (operating hours)**
- **Total Allowable Wear (inches)**: Continuous, Intermittent (describe)

Environmental Conditions
- **Air Clean**, **Contaminated-Type**
- **Gas Clean**, **Contaminated-Type**
- **Liquid-Type**, Concentration
- **Lubrication properties**
- **Is sealing available?** Type

Environmental Temperature
- **Maximum**, **Minimum**, Normal
- **Quantity required per year?**

Bearing to be used for
- **New Design**, **Existing Design**
- **If not new, what type of bearing has been used?**
- **Part Number**: I.D., O.D., Length
- **Was it satisfactory? If not, why not?**

Questions:
- Does the bearing experience shock or excessive vibration?
- What is the primary load factor: radial or axial or both?
- Are the temperature variations (if any) gradual or rapid?
- Type of Media: air, gas, or liquid? Intermittent or Constant?
- Is the environment abrasive in nature?
- Does the environment call for electrical: dissipation or insulation?
- Does the environment call for thermal: insulation or transfer?
- Does the application require: FDA, NSF, USDA, 3A or USP?
- Is the shaft running: vertically, horizontally, or diagonally?
- Is shaft misalignment anticipated?
- Are there special shaft treatments: hard-coat, ENP, chrome, TFE?
- Notes about the hardware (housing material, etc.):
- Chemicals in contact with the bearing:
- Additional Notes:

Bearing Load (P value) is LBS ÷ (ID x Length)

<table>
<thead>
<tr>
<th>ID</th>
<th>Length</th>
<th>ID x L</th>
<th>Load</th>
<th>Load ÷ (ID x L) = P value</th>
</tr>
</thead>
</table>

Relative Velocity (V value) is Shaft Ω x 3.14 / 12 x RPM

\[\text{Shaft Dia.} \times \pi \text{ equals } \times \text{by 12 } = \times \text{RPM} = \text{V value} \]

- **PV value**
 - P times V equals PV
 - Any special notes?